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Abstract We study the dynamics of an electron weakly coupled to a phonon gas. The initial
state of the electron is the superposition of two spatially localized distant bumps moving
towards each other, and the phonons are in a thermal state. We investigate the dynamics of
the system in the kinetic regime and show that the time evolution makes the non-diagonal
terms of the density matrix of the electron decay, destroying the interference between the
two bumps. We show that such a damping effect is exponential in time, and the related decay
rate is proportional to the total scattering cross section of the electron-phonon interaction.

Keywords Quantum mechanics - Decoherence - Phonon field - Kinetic regime - Weak
coupling limit

1 Introduction and Result

Quantum interference of a state can be destroyed via interactions with an external environ-
ment. This phenomenon is called decoherence and it is recognized to be responsible for
the transition from quantum superpositions to classical probability measures. This feature
makes it relevant in the field of quantum information, where the superposition of states al-
lows for parallel computation and therefore it must be preserved.
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Rigorous results on decoherence have so far concerned systems with a discrete energy
spectrum or decoherence induced by practically instantaneous scattering at time zero. For
the first model, we mention that the decoherence of an electron trapped in a harmonic oscil-
lator and interacting with an electromagnetic field in the dipole approximation was studied
in [8]. For the second situation, in [1, 2, 4] it was showed that decoherence is the most rel-
evant effect in the dynamics of many heavy particles in an environment of light particles,
when the mass ratio is small. Furthermore, in [3] the so-called influence functional is de-
rived to reveal decoherence. For an extensive physical introduction to decoherence we refer
to [7, 9].

Here we investigate the occurrence of decoherence in the dynamics of an electron weakly
coupled to a phonon field. The energy spectrum of the electron is continuous and the
phonons constantly bombard the electron along its time evolution. We will study the problem
in the kinetic regime with a weak coupling. We introduce a scale parameter ¢ and analyze
the time evolution at large space and time scales of order 1. If (x, t) denote the original
(microscopic) space and time coordinates, then we introduce the macroscopic space and
time coordinates (X, T') by

T :=¢t, X :=¢x.

The coupling constant between the electron and phonon field will be given by A = /.

On the macroscopic space and time scales, the dynamics of the electron in such a limit
is described by a linear Boltzmann equation, as proven in [5]. In this paper we prove that,
in addition to such behavior, on the microscopic scale the quantum interference remains
detectable and decays exponentially in time with a rate growing with the strength of the
electron-phonon interaction.

To be more specific, we choose a special initial state that exhibits a strong interference
pattern without phonon interaction. We assume that initially the electron lies in the super-
position of two distant macroscopic wave packets (“bumps”) in R¢ (d > 3) moving towards
each other, namely

Vo (x) i= g 4 (%) + Y5 _(x)
Y () =" f(ex + Q)e' ™ (1.1)
Yo (x) =& fex — Q)e ™

where f is L2-normalized and satisfies the following hypothesis of regularity
316 md
fe H3TOMRY. (1.2)

The vectors P, Q € R? are parallel, i.e. P - Q = |P||Q| and assume P # 0. The wave
packets ¥ _ and g , are localized around the macroscopic points Q and —Q and they
move towards each other by a momentum P. The function f describes the macroscopic
envelope of the bumps. We remark that v is not normalized in L?, but it is easily seen
that lim,_¢ Y5l = V2, so we will always consider ¢ sufficiently small to guarantee
L=< ¥5ll2 < 2.

To explain our result, we preliminarily examine what happens if the interaction between
electron and field is absent. In this case the state of the electron v = ¥/ . evolves accord-
ing to the free Schrodinger equation i9,y, = —%Al[ft‘ The two wave packets maximally
overlap at time 7 = s~'|Q|/| P|, when the probability density of finding the electron at x,

@ Springer



Rate of Decoherence for an Electron Weakly Coupled to a Phonon Gas 303

apart from the normalization factor, is given by

|¢;free(x)|2 =2(1+cos(2P - x)) ‘8"/2 (eigz[_% f) (ex)‘z.

The shape of the bumps has undergone a semiclassical change and their supports are
shifted to the origin. If the state were classical, the probability densities of the bumps should
add up, yielding the factor of 2. The cosine term carries the typical interference fringes
and therefore the information that the electron lies in a quantum superposition of two wave
packets.

Let us remark the presence of two spatial scales in |¢,—f free (X) |2: the envelope of the wave
function is spread on a length of order ¢!, while the interference pattern manifests itself on
a length scale of order 1. The size of the interference fringes can be quantified evaluating

the Fourier transform of |7 free|2 and then performing the limit ¢ — 0. One easily sees
~ 2 ifP=0
1in(1)/dxe2”°*|w;fm(x)|2 ={1 ifP==4P (1.3)

0 otherwise.

If, instead of being isolated, the electron interacts from the beginning with a phonon field
that initially lies in a thermal state, then the interference fringes are expected to be damped
by a factor exponentially decreasing in the collision time in macroscopic units, i.e. with

1Q1/1P].

Indeed, we prove that

lim dxeiziP'xpf(x) = e_alpTJ‘Q‘

e—0
where op, given in (7.4), is the total scattering cross section for an electron with velocity P
interacting with the phonon field, and pf(x) is the probability density of finding the inter-
acting electron at x at time 7. The interacting Hamiltonian will be defined in Sect. 4. Our
method easily extends to more general initial states whose free evolution exhibits interfer-
ence fringes. For simplicity we discuss only the particular case given by (1.1).

To state our result in a more precise way, we use the Wigner function formalism instead of

the wave-function description of the state of the electron. At time zero, the Wigner function
of the electron reads

d vy YR av—T
Wo(x, v) := fRd (zjry)de_lv"lﬁo(x—i-y/Z)l//O(x =y/2). (1.4)

According to the decomposition of ¥ given in (1.1), formula (1.4) yields a decomposition
in four terms for the Wigner function of the initial state

dy
Rd (27)

Wo = Z WO,owt’v WOA,ao/ (x,v):= e—iv<yw&a (x+ )’/2)1#3‘0/ (x — y/2),

a,a’ e{£}

where the so-called diagonal terms Wy 4, and Wy __ represent an electron in the state ¥ |
and 1 _ respectively, and the non-diagonal terms Wy ,_ and W, _, represent the interfer-
ence between the states ¥ , and ¥ _.

Since the time evolution of the Wigner function is linear, one can study separately the
evolution of diagonal terms W, (#) and W__(¢) and of non-diagonal ones W, _(¢) and
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W_,(¢). We will use the notations W i fe.(t) and Wy 4 (¢) for the corresponding com-
ponents of the Wigner transform of the state at time ¢ under the free and the interacting
evolutions, respectively. The interacting evolution will be defined in Sect. 4. We remark that
after tracing out the phonon degrees of freedom, the electron will be in a mixed state and
thus W, 4 (t) will be Wigner functions of density matrices.

In order to easily define the phonon field operators in a rigorous way we consider the
system confined in a d-dimensional box A, =[—L/2, L /Z]d and then perform the thermo-
dynamic limit L — oo. Such a limit is taken after the phonon trace but before the scaling
limit ¢ — 0, and the result is uniform in L. The parameter L will be suppressed in the
notation of W, 4 (¢). Before performing the thermodynamic limit L — oo, any integral in
the space variables will be thought of as one over the volume A, and any integral in the
momentum variable is actually a summation over A* = (L~'Z)¢. For the computation of
the thermodynamic limit we refer to Sect. 4.5 in [5]. The free evolution will always be
considered in the infinite volume to avoid taking the unnecessary thermodynamic limit in
Wi,i,free(t)~

We will test the evolved Wigner functions against observables, J(x, v) = J.(x, v) that
may scale with ¢ to detect the interference fringes. Let (J, W) = f J(x,v)W(x,v)dxdv
denote the expectation value of the observable J on a state given by the Wigner function W.

We will always assume that

1] := sup/sup@(s, v)|dE < oo, (1.5)

where we use the convention that the hat on functions defined on the electronic phase space
denotes the Fourier transform in the space variable only, i.e.

T 1 —i&-x
e = s [ v,

In the following Theorem 1.1 we compare the kinetic limit for W, _(¢) and W_, (¢) with
the corresponding terms under the free evolution. With these notations, we have the follow-
ing main theorem:

Theorem 1.1 Let the initial state of the electron be given by (1.1) with P # 0 and fix a
macroscopic time T. At any time t, let W _ pe.(t) be a non-diagonal component of the
Wigner function of a non-interacting ( “isolated”) electron evolved under the free evolution.
Let W, _(t) be the analogous non-diagonal component of the Wigner function describing
the electron at time t interacting with a phonon field through the interaction Hamiltonian
(4.1). Then, for any observable J, satisfying (1.5), we have

lim| lim (Jo, We (7)) = 7777 (Jo, Wi a6 ™' )) | = 0 (1.6)
£— — 00

where op, given in (7.4), is the total cross section for an electron with momentum P in the
phonon field.

To detect the destruction of the interference fringes, the two-scale structure of W, _(r)
and W_, (¢) obliges us to test W, _(¢) and W_, (¢) against observables endowed with the
same two-scale structure. A possible class of such observables J. will be given in Sect. 4.4.
In particular, for these observables one easily obtains that lim,_,o(J,, W _ tec (67! T)) exists.
The precise statement is formulated in Corollary 4.1.
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The evolution of the diagonal terms, W, and W__, on the macroscopic scales is given
by the linear Boltzmann equation,

(0r +Ve(V) - Vx)Fr(X, V):/O’(V, U)Fr(X,U)dU — (/U(U, V)dU)FT(X, V)

(1.7)
with collision kernel o (U, V) and free dispersion relation e(V) = %Vz. The two terms on
the right hand side are called the gain and loss terms, respectively. For the precise statement,
see [5].

Theorem 1.1 describes the evolution of the off-diagonal terms. The physical scenario can
be explained as follows: in the kinetic limit, the two initial bumps evolve independently as
classical phase space probability densities obeying the linear Boltzmann equation (1.7). In
addition to that, there is an interference term that equals the corresponding term for the free
case, except for a damping factor, exponential in time. In other words, the interference term
evolves according to a Boltzmann equation without gain term.

From the technical point of view, we expand the time evolution into a Duhamel sum,
trace out the degrees of freedom of the phonon and lastly perform the scaling limit. This is
conveniently made using Feynman graph expansions, similarly to [6] and [5]. The novelty
in our model is that the relevant graphs are no longer given by the ladder terms: these ones
vanish in the limit and the resulting dynamics is given by the renormalized free evolution.

The paper is organized as follows. In Sect. 2 we fix some basic notation and conventions;
in Sect. 3 we state regularity assumptions on the dispersion relations and on the form factor
of the interaction, and give a lemma on some estimates that will be used repeatedly along
the paper. In Sect. 4 we define the model and the scaling, and specify the assumptions on
the initial state and the observables. In Sect. 5 we explain the link with the result provided in
[5]. In Sect. 6 we prove that the contribution of the ladder graphs is negligible in the kinetic
limit, and in Sect. 7 we compute the contribution due to renormalized free propagators. The
paper ends by an Appendix containing the proof of the lemma stated in Sect. 3.

2 Notation and Conventions

We model the electron as a spinless particle, so the state space for the electron is H, :=
Lger(A 1). The electron dispersion relation is denoted by e(k), k € R?, and the Hamiltonian
H, of a free electron acts on H, as follows

H.=e(—iV). 2.1

One can think of the classical dispersion relation e(p) = %

e(p) =+/|p|* + M2, where M is the mass of the electron.
Let y be the density operator representing the state of the electron; y is a positive operator

on L%(R9) and its operator kernel is denoted by y (x, y). Let ¥ be the Fourier transform of

y as an operator, i.e. its kernel is given by

or the pseudo-relativistic one

~ dxdy i iivy
y(p,u) = W ip-x+ Yy (x, ).
The Wigner transform of y is defined as
vy y ¥y _ 4y
Wy(x,v):/e 2y (r+3x-3) oy 2.2)
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W, is a real function defined on the classical phase space of the electron. We recall the
convention that the hat on functions defined on the phase space of the electron denotes
Fourier transform in the space variable only, i.e.

W, (& v)Z/ dx eTETW, (x U)=(27T)7%7<U+§ U—§> (2.3)
e Q)4 T 27 2)° '

The rescaled (macroscopic) Wigner function is defined as follows
WX, V)=¢e"'W X 1%
y (X V)= W, | —. V).

If the density matrix y is the orthogonal projection on the space spanned by the function ¢
(i.e. the electron lies in a pure state), then we denote the associated Wigner function by W,,.
We will sometimes use symbols like W (¢), without explicitly referring to a density matrix y.
In such cases, we will always mean the Wigner function of the electron at time ¢, i.e. the
Wigner transform of the reduced density matrix for the electron ., to be defined in (4.6).

The pure states of the phonon field are represented by vectors in the bosonic Fock space
Hpn = @zc:()[ﬁ(A £)]%", where ®;n is the n-fold symmetrized tensor product. We intro-
duce the phonon creation and annihilation operators, aZ, ax, with momentum k, satisfying
the usual commutation relations

lax, a1 =8k — k).
The number operator of the phonons in mode & is
f

N :=aj ay.

The Hamiltonian of a free phonon field reads
Hy, =/dka)(k)./\/k. (2.4)

Here w (k) is the dispersion relation for phonons. The state of thermal equilibrium for a
phonon field at inverse temperature S8 and chemical potential w is given by the density
operator

Yoh 1= Z*l[e*,Bth‘Hlkadk]’ with Z = Tty (e*ﬁthvLMkadk)_ 2.5)
The expected number of phonons in the mode k reads

e Po)+u

N (k) := Tprh (YouNi) = 1 — e—Polotn”

The symbol C will denote various positive constants arising in estimates.

3 Assumptions

In the following we will use extensively the notation {x) := (x* + 1)% and the estimates
(x+y) = C{x){y)

3.1
(x+y) ' <Cx) ).
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The dispersion relations e(-), w(-) for electrons and phonons are assumed to be:

e spherically symmetric;
e decaying for large k up to the 2d™ derivative:

IVie(k)| < C(1+ (k)*™), 1=0,1,2,...,2d;

(3.2)
Vo) <C1+ (k)*™), 1=0,1,2,...,2d.
We will often consider the functions
D (p,k):=elk+ p) Lwk). 3.3)
We assume that the following relations hold
lim &4 (p, k) =00 (3.4
k— 00
AC;,C,eR  sit. 0< Cy <Hess; @ (p, k) <C,. (3.5)

Let us consider the “thick level sets”
Ei(p,0,8):={k:|Dx(p, k) — 0| <3}

for the functions ®.. From (3.2), (3.4), (3.5) one can conclude that there exist C, p such
that for any §, p < p

sup | E+(p,6,8) N B(g, p)| < Cop*~", (3.6)
p.q,0
where | - | denotes the Lebesgue measure, and B(q, p) is the ball of radius p centered in

g € RY. We require a further condition on the intersection of two such sets: there exist
p, C3 > 0 such that for any 8;,8,, 0 < 5, p1, p2 €R%, 6,6, e R

C3818,p772
sup |E+(p1,61,81) N EL(p2,62,8) N B(q, p)| < —Ip P (3.7
q 1— D2

The listed conditions are fulfilled for a classical or a pseudo-relativistic electron if || V2| s
is sufficiently small.
To ensure that the density operator for the phonon field is trace class we assume

info (k) - ug~'>C>0.

The electron and the phonon field will be coupled via an interaction form factor F(k) :
R? — R. It is assumed to be real and symmetric, namely

F(k) = F(—k) = F(k)
and it has a fast decay up to 2d-derivatives
max |V, F (k)| < C (k)" (3.8)
1=0,....2d

For 0 = 1 we define the functions

Lk, o) = |F(K)]? (N(k) n %Ll)
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and
Lk):=Lk,1)=|F&))>NKk) +1). (3.9)

Obviously, L(k, £1) < L(k), and L shares with F the decay estimate (3.8).
These conditions on e(k), w (k) and F (k) ensure the following key estimates that we will
subsequently use:

Lemma 3.1 For the functions L defined in (3.9), and ®. defined in (3.3), the following
estimates hold

Lk)dk
sup/ () — <Cn™, m>Q0; (3.10)
p.0 Jre |0 — Dy(p, k) +in|"
L(k)dk C(log* n)?
/ _L® : < Clogm” .y
re |0 — Du(p, k) +inl|0 — Pi(u, k) —inl(p)u) — |p—ul,(0)2(6)2
/ da < Clog* (3.12)
su - = og n; .
P e o — eur +£/2) +in] (@) £

where n > 0 and we used the notation f* = max(l,|f]), f, =min(l, |f| + n).

The new estimate compared with [5] is (3.11), whose proof is given in the Appendix.
In the proof of Theorem 1.1 we will use the following inequality too:

Z / e 5P PO L (K, 0)dk| <
oe{x}

The proof of (3.13) is in Lemma 4.1 of [5].

C
{s)

(3.13)

sup 7
P 2

4 The Model
4.1 Hamiltonian

The dynamics of the system consisting in an electron interacting with a phonon field is
generated by the Hamiltonian

H = He @ Iy, + Iy ® Hpn + Hy.

In any tensor product the first factor acts on H, and the second on H,,,. The free Hamilto-
nians H. and H,; have been defined in (2.1) and (2.4). The interaction Hamiltonian H; is
defined by

H = ikfdkF(k)(e‘ik'va — " ay). 4.1)
As stated in Sect. 1 we will always assume A = /.
We assume that initially the electron and the phonons are independent and their initial

state is represented by the density operator

Co:=%e,0® ¥
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where Y. is an electronic density matrix and y,, is the phonon thermal state defined in
(2.5). The time evolution of I'; is described by

ioI'y =[H,T]
with [y as initial data, or, equivalently
[, =e tHiTyel .
4.2 Initial State of the Electron

The initial state of the electron is represented by the wave function (1.1). The density oper-
ator corresponding to the wave function v is the one-dimensional projection

Yeo = 1¥5) (W5l

with integral kernel

Yeo(x, y) = ¥ ()5 ().

According to (1.1), the initial density operator for the electron can be split in four terms

Ye,0 = Ve,0,4+ T Ve.0,—— T Ve,0,4— T Ve,0—+ 4.2)

where

Yeo.aa' = W50 (V5o (4.3)

with o, &’ € {+, —}. We stress once again that, whereas y. g 4 and y. o, __ describe an elec-
tron in the state ¥, and v/ _, respectively, the terms e 04— and ye o+ do not represent
any physical state: in particular, as operators they are not positive. They represent the inter-
ference between the states ¥, and ¥ _.

According to (4.2), the Wigner transform of the initial state for the electron can be written
as

Wye = Woiq + Wo—— + Wo o + Wo—y 4.4)

where

WO.++(X, U) Wf (8X + Q —>

+ P
Wo,——(x,v) =W, <8x — >

. 2iv-Q v
Wo,+—(x,v) = 2P xe T Wy <8x —)
&

WO +(X 1)) —e —2iP-x —Z’LFQ W,-(sx, _)
' £
as one can immediately verify by (2.2).
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Recalling the convention adopted in (2.3)

Wo (&, v) Z(me)ideﬁ%f(g + §- 2P> f(% £ —2P>

3 2e 2¢
e (4.5)
W, ) i 2P\ ~ 2P
WO’_JF(S’U):( 2718) e_ZZTQf<§+§—;8 >f(§_$—;8 )

All components of Wy depend on ¢, but this is omitted in notation.
4.3 Time Evolution of the Electron

The state of the electron at time ¢ can be described by the marginal (or reduced density
operator)
Ve 1= Tryg, Iy (4.6)

or, equivalently, by the Wigner function

d vy
Wt x,v) = (zﬂy)d € Ve (x + g,x - %) :

Since the time evolution is linear, the initial decompositions (4.2) and (4.4) propagate at any
time ¢:

Ve = Vet 4+ T Yer.—— + Verrt— + Ver,—+
W)= Wy (1) + W (1) + Wy (6) + W (1)

4.7)

Again, the first two terms in the decomposition are called diagonal, and the other two terms
non-diagonal.

4.4 Observables

We will use the notation O for the observables considered as operators and their Wigner
transforms will be denoted by J = W,,. The expectation value of an observable is given by

TrO*ye=/J(x,v)W(x,v)dxdv=/j;(u,v)VT/(u,v)dudv.

We need observables capable to resolve the size of the interference fringes. Therefore we
consider observables O = O, endowed with a two-scale structure in the space variables but
we always assume the condition (1.5) on J,. This implies that

lIOI* := sup | O} O || < 00 (4.8)
&
since the operator norm of ©*O is bounded by ||J]|2.
In order to select observables that actually detect the exponential decay of the interference

fringes, we provide sufficient conditions on J, for lim,_¢(J/,, W+_,free(8‘1 T)) to exist. We
assume that the Wigner transform of O, has the structure

Je(x,v) = A(ex,v)b(x) 4.9)
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where A describes the macroscopic profile of the observable and b encodes the short-scale
structure.

First we consider for simplicity the case of Newtonian dispersion relation, i.e. e(v) =
1v2. One has

Py iy v
Wi tree(e ™' Ty x, 0) = 2 P2 @ FPDyy (ex — T, E)

Due to the regularity hypothesis (1.2), W, belongs to L'(IR?*?), and then | W, _ free (7' Ty
= ||W¢|1. Besides, due to (1.5), it is clear that J, € L>°(R??) with a uniform bound in .
After an elementary change of variables, one gets

(o, Wy tree(e7'T)) :/dxde(x +evT, sv)b (g + vT) Q2P (§+0T) 2iv-(Q—PT) Wy (x,v)

and the limit for ¢ — 0 can be investigated using the dominated convergence theorem, as-
suming that A and b are bounded and continuous functions. One finds that:

o if limyy|, o0 b(x) =0, then lim,_,o(J;, WJF_,free(ee’I T)) vanishes. In this case the observ-
able does not resolve the interference fringes, even though the limit of the expectation
value exists;

o if limj o0 b(x)e 2P =: ¢, # 0, then

Him (o, Wi e (67 7)) = f dxdvA(x, 00" CPDW, (x, v) (4.10)

In general, the short-scale factor » must exhibit the periodicity of the interference fringes.
We require the distributional Fourier transform 5(£) to be a complex measure with a finite
total variation. If it has a non-trivial Dirac delta component with frequency 2P, i.e.

N ~ ,
TE{)I}»O W /|§—2P|§t b(&)dE =: ¢, #0, 4.11)

then the interference fringes in W, _ can be detected by J.. For the other off-diagonal term,
W_,, one needs a non-trivial component with frequency —2P. Working in Fourier space
requires more conditions on A, for simplicity we assume that A is a Schwartz function.

In the case of a more general dispersion relation e(v) the Wigner transform of the free
evolution, W, _ .. (), is given by

Wi free(; €, )

= (V2me) et n—ew—gm) 2 g (L §—2P - §-2P (4.12)
€ 2¢ £ 2¢

in Fourier space. After a change of variable one gets

(Jga W+f,free(‘9_lT)>

_ (2n)_d/d$dvd§7(§ n ZPS— §,£v> Z\@)e—irrl[e(sv+gg/2+P)—e(sv—sg/z—P)]

i)
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Again, by using dominated convergence, we have
}E%(Js, W+—,free(8_1T)>
= Q)" f dedvA(E, 0)e2""'<Q-TW<P”f<u + %) f<v - %)

that, recalling (2.3), generalizes (4.10) to a generic dispersion relation.
In summarizing, we have proved the following

Corollary 4.1 Assume the hypotheses of Theorem 1.1 and let J.(x,v) = A(ex, v)b(x). Let
either

1) e(v) be quadratigi AeCo(R¥),beCyRY) and cp := limyy |- 00 b(x)e 2P or
ii) A e S(R*) and b be a measure with finite total variation with c, being the coefficient of
the Dirac delta component at 2P of this measure (see (4.11)).

Then,

lim Tim (J,, We— (7' 1)) = &7 im(Jo. Wi e ™' 7))
E—>

e—>0L—00

= e‘TUPGf dxdeezi”‘(Q_Tv"(P”Wf (x,v).

The hypotheses cover the case J,(x, v) = e Px for the quadratic dispersion relation (see
(1.3)).
5 Known Results

The proof partially follows the arguments in [5]. To avoid duplicating them but still keep the
present paper relatively self-contained, here we summarize some notations and results from

[5].
5.1 The Main Term of y,
We consider the density matrix of the whole system

r, = e*iHIFOeI'Ht
;=

and expand the propagator e~ into a Duhamel sum up to the order
_ 2.2loge
0= log|loge|’

After performing the phonon trace and defining the reduced density matrix of the electron
as

Ver = Trp (e*"H’Foe"H’) ,

Ye.r 18 decomposed into the sum of a main term and an error term

Ver = VD) + v (1) (5.1)
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where K € N is an arbitrary integer. For the precise definitions of y}}“i" (t) and y£7(t) see
formula (2.18) in [5], but their explicit form will not be needed here. We need only to know
that

lim sup lim sup lim sup ’Tr y;;"(s_lT)Oﬂ =0, (5.2)
K—o00 e—0 L—oo
i.e. that the estimate (2.24) of [5] holds in our case as well. To arrive at this result, the
argument in [5] used only assumption (1.26) in [5] on the initial state and assumption (2.21)
in [5] on the observable. In our case, the first assumption is guaranteed by the hypothesis
(1.2); the second one is inequality (4.8). For the same reason, Lemma 3.1, Proposition 10.1
and Lemma 10.2 from [5] also hold in our case.
To evaluate y,‘;“‘i"(t) we use Proposition 10.1 and Lemma 10.2 in [5]. Results therein can
be resumed as follows

limsup| lim (J;, W_main,,—
s—>0p L—>oo< € g e IT))

=0 (5.3)

K—1 min(N,N)
N Z Z Z Z C;,@,id(gilT)
n=0

N,N=0

m=(my,....mp) N Gi=@iy, ... ) NI
N=n+2 Z’]l.:() mj N=n+2 Z_’;:O i j

where, for any m, i € N**!, ¢ > 0 we defined

Cpy iia(t) i= (2r) 2 320 F2hm 2% /dsdu(]_[dkj>2<s,u+2k1>
j=1 =1

(Tjé(:t}
j=1,...n

x Wys (€,) (l_[ L(kj,aj)>ez’”/doze‘”“ (1_[ R'}”“TT’)
R

j=1 Jj=0
~ n i 1 o2
x / dae'"® (]‘[ R Tj’“) (5.4)
R .
Jj=0

Here n > 0, k = (ky, ..., k,) e R, |m| = Y iomy, || =3"i_omi; and to define R; and
Y; we first introduce

1

a—e(v)—z

B L(k,o)dk
T, (a, v) —(;t/ a—ew+k)—owk)+in

fora e R, veR?, zeC,and n > 0, and then we set

R; :=R<ot,v+ Z kH—; Z U/w(kl)—iﬂ)

I=j+1 I=j+1

R(x,v,2) =
(5.5)

ﬁj = R(Ei,v+ Z k; — % Z sz(kz)-l-i??)

I=j+1 I=j+1
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T =1, (a — Z owk), v+ Z k; + %)

I=j+1 I=j+1

Y, = ﬁ(a‘— > owk) vt > k- %)

I=j+1 I=j+1

Formula (5.4) holds for any n > 0; later we will choose n = ¢.
The following estimates will be used in the next section

sup [ Y, (e, p)| <€, IR;|™T <M |R;l,
p.a,n
n (5.6)
sup (IV, Yy (e, p)l + 19 Ty (e, )| +13, Y, (e, p)I) < Cn~™"/
p.o,n

The first and the third inequalities in (5.6) are proven in [5] (Lemma 4.1), the second is
trivial.

5.2 Ladder Wigner Functions and Related Feynman Graphs

We introduce the family of “ladder Wigner functions” W44 (1) ' defined implicitly by the
relation o

Crr iia () = (Je, WA (1)), (5.7
The explicit expression of W,El;,'f}j{ (t) in the Fourier space can be easily obtained comparing

(5.7) with (5.4). The content of (5.3) can be expressed saying that, in the thermodynamic
limit, the expectation value of O, on yg*"(¢) can be decomposed in the sum of the expecta-

tion values of J, on the states represented by W49 (1),

The function VT/}l“dmd%' (t; &, v) is linear in ng, thus it contains two evolved copies of the
electron wavefunction: one copy initially lies in the state represented by v, the other in
Y& In the following we will call them, for short, the first and the second copy. In the time
interval (0, ¢) each copy of the electron emits and absorbs phonons. An important feature
of the evolution described by I/’I\/,l,aiden% (t; &, v) is that any emitted phonon must be reabsorbed
and vice versa, but a phonon emitted by one copy of the electron can be reabsorbed by the
other.

This fact permits us to distinguish two different processes: the exchange of phonons
between the two copies of the electron, and the recollision of the same copy with the same
phonon. In the evolution described by W)ffnd% (t; €, v) all possible recollisions are immediate,
i.e., there are no further events in the time interval between the emission of a phonon by a
copy of the electron and its reabsorption by the same copy. Moreover, exchanged phonons
appear in the same order in the time evolution of the two copies of the wavefunction of the
electron.

In (5.4) there are n exchanged phonons and their momenta are labeled &y, ..., k,. The
electron propagator between consecutive phonon collisions is represented by the factors R;
(for the first copy) and E j (for the second). Between the jth and the (j + 1)st exchanges of
phonons, the first copy of the electron undergoes m; immediate recollisions, each of them
embodied in a factor Y; in (5.4). Analogously, the second copy of the electron suffers 77 ;
immediate recollisions, each of them represented in (5.4) by a factor Y i

The expectation value of an observable O, on the state represented by Wzaﬂd% t:&,v)
can be represented as a Feynman graph (see Fig. 1). o
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t
v+E/24+ 50 Ky v+E/2 .
N oo T Oog ¥
06 ’C] kn_z kn—l k,'"
[1 1] [1 1 17 [ _5
v—E§/2+ 5k v—¢&/2

Fig. 1 A ladder Feynman graph. The two horizontal lines represent the time evolution of the two copies
of the electron, and the vertical lines joining the two horizontal ones represent the exchanges of phonons
between them. They are labeled by the momenta of the exchanged phonons. By convention time goes from
the right to the left and the labeling of the exchanged phonons follows the opposite ordering. The square loops
on the higher horizontal line symbolize the recollisions in the evolution of the first copy of the electron. Such
loops have no momentum labeling because in the related factors Y'; an internal loop momentum integral has
been performed. An analogous interpretation holds for the square loops in the lower horizontal line. Here
my=1,m,_»=0,m,_1=5my=2andmy=2,m,_p=3,m,_1=0,n, =1

5.3 Non-Diagonal Terms

Following (4.7), the expectation of any ladder Wigner function can be decomposed in diag-
onal and non diagonal terms

m n, 1d(t) - Z aa’,m,&,id(t)

a0’ e{+,—}

where C;,, | = .(¢) is defined from (5.4) after replacing W,,,s by Wo,w/. The corresponding

Wigner transforms, Wé‘f‘iﬁrm i (1), are defined implicitly via
C* —,m,m, 1d(l) - ( Wcltegdzrm m(t)> (58)

and of course,

ladder ladder
anm([)_ Z Waa nmm(t)

a,a’ e{+,—}

Since both the evolution of density matrices and the definition of y,‘g“‘“(t) and yg"(r)
are linear in the initial data (see (2.18) and (2.19) in [5]), all results listed in Sect. 5.1 hold
separately for diagonal and non-diagonal terms, according to decompositions (4. 7) In par-
ticular, formulas (5.1), (5.2), (5.3) remain valid after replacing Veirs V m‘““ () and y¢"(¢) with
the corresponding non-diagonal component ye ;. +—, ymam (t) and )/f("+ (1), respectively.

Then, formulas (5.2), (5.3), applied to non-diagonal terms give

lim sup lim sup hm (Jg, Wo_(e7'T))

K—oo e—0

- Z > > Ci_ i ' T)|=0

N,/V:O n=0 m=(myy,..., mp)eNnt1 fi= (mO ..... mn)eN”+1
N= n+22 —o™Mj n+22’
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In [5] it is proved that the limit

lim lim lim [Trymm(zz_1 T)O*]

K—o00eg—0L—00
equals the expectation value of O, on a distribution on the phase space that solves a linear
Boltzmann equation, provided that O, has no short-scale structure (i.e. b =1 in (4.9)).

In the rest of the paper we study the same limit of the non-diagonal part for a two-
scale observable (4.9). In the following section we prove that ladder terms with at least one
rung do not contribute. In contrast, diagrams with no rungs and pure recollisions give a non
vanishing contribution, characterized by the exponential damping described in Sect. 1. This
is the content of Sect. 7.

6 Non-Diagonal n-Rung Ladder Term with Immediate Recollisions: Estimate

We estimate the contribution of the generic non-diagonal ladder term Wfddzr,n () to the
expectation value of a two-scale observable J,.

Lemma 6.1 Givenn > 1, m, i € N*T', P £0, ler W'adder & be defined as in (5.8), and J;

+—,n,m,

be a two-scale observable satisfying estimate (1.5). Then for any fixed T > 0

adder — n m m ( >
(Jo, Whdder (7' T))| < CrimiHiE ‘||J||| Pl (log* &)*ell f 32 za) (6.1)

+—,n,m,,m

where || J || is defined in (1.5), | P|, = min(1, | P| + ¢), log* ¢ = max(1, |loge|) and the con-
stant C depends on T .

Proof From (4.5), (5.4) and (5.8) we have

(J Wladdcr (t))

+—.n,m,n

— (27_[)—2—— g~ d ) 2n+2lm|+ 20 Z /dédv (1_[ dkj> .7; (E, v+ Zk1>62!
=1 I=1

aj ef{*)

x f<8 +5 sz)M<HL(k,,o, )
[ e (HR’"’“ ) / dote”“(l—[ R +1~mf>

ladder
To estimate [(J,, W2 m i (€

and definition (3.9). Then

(e7'T))| we use the first two inequalities in (5.6), with n = €,

+—.n,m,n

gg‘dﬁ”(C)\zg‘l)'m”@/d“;‘dv Hj;(f’ .)”OO ‘f(ﬂ n & —2P>| ‘f<3 B3 —2P>‘

£ 2¢e £ 2¢e

‘(J yy ladder (e"T)))
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53 (H/ﬁ(k >dk>/ <ﬁ|Rj|>Ad&(ﬁ|§j|>. 62)

(re(j:) Jj=1 j=1 Jj=1
Jj=1,.

Let us focus on the integral in dk; . ..dk,dada.

(i[]/c(kj)dkj>Ada(ﬁ|Rj|>Ad&<ﬁ|§,|)

=fdadmnnﬁu/dknﬁ(kn>|R,,_1||ﬁn_l|.../dklakl)monﬁm (6.3)

Indeed, the variable k; appears in R; and R j only if j <! — 1. Therefore, we can integrate
in (6.3) following the order ki, ..., k,. The integrals in k; with 1 < j <n — 1 are estimated
by standard Cauchy-Schwarz inequality

/ﬁ(kj)|R,»,,||13,,.|dkj gc/ukj)mj,qzdkj+cfc(k,-)|i€j,1|2dk,- <Ce™' (6.4)

where we exploited estimate (3.10), with n = ¢ and m > 1. We finally obtain the factor
Cn7 1 8—n+l .

The integral in k,, is estimated using (3.11) with = o, 0 =&, p=v+£/2, F=v—£/2,
n = ¢. We obtain

/ L(ky)dky

lo —e(v+&/2+k,) — oy (ky) +ielld —e(v —&/2+k,) — o, (k,) — ie]
<C (log"£)*(v +&/2) (v —£/2)
- I [+ {e) /2 () /2

where according to the notation used in Lemma 3.1, we defined ||, = min(1, |§| 4 €).

Finally, by (3.12) both integrals in da and da give a factor log* ¢. Then, by (6.2), (6.4)
and (6.5) we have

(6.5)

+—,n,m,m

'(J yy ladder (_IT))‘

< e I(ChPeT ) (log" £) e / dsdv 7. €., 'f (g Tl )‘
(v +E/2) v —£/2)

2¢
~(v &-2P
f(E_ 2¢ ) &l

We focus on the integral factor. Using (1.5) we get
(v+§/2)(v-§/2)

2P —2P
[azavzeol |7 (2 + 5570 ) |7 (2 - 5550 )|[ HA

2 -2
’f( I P)Hf(ﬂ—S P)’<v+$/2>(v—é/2>]
e 2¢

X

(6.6)

<||J||€up[|‘§|

6.7)

1 (v+8/2)(v —£/2)
=¢ ”J””f”HZ]Rd)sup|:|%_| <Sup( +§ 2p> (_,_g 2p>2)j|'

€ 2e
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By (3.1) one has

2
E TE 2P><__.{-‘—2P) <C(P) (6.8)
e 2e
and
v &—-2P\[v &-2P &-—2P
e - > 6.9
<e+ 2¢ ><£ 2¢ >_< 2¢ ©9)
Elementary calculations show
1 C
sup < . (6.10)

Then, plugging (6.8), (6.9) and (6.10) into (6.7) we obtain

2 -2
/d%‘deJ(S N ‘f( I P)H (U $2£P>

(P
< Ce ||J||W||f||H2<Rd)

(v+8/2)(v—-§/2)
&1+

By (6.6), recalling that A = \/e we conclude the proof. 0

Remark 6.2 For n > 2 one can gain another ¢ factor in estimate (6.1). This is easily accom-
plished using inequality

/ L(k)dk _ Clog’ n)?
Rd |6 — Du(p, k) +in||0 — OL(u, k)—lnl |p—ul.

for estimating the integral in k; in (6.3).

7 Terms with Immediate Recollisions Only

In this section we prove Theorem 1.1, i.e. we compute the contribution of terms consisting of
immediate recollisions only, namely terms with n = 0 in (5.3). The corresponding Feynman
diagrams are illustrated in Fig. 2. We stress that, according to the results in the previous
sections, these are the sole non vanishing terms.

Proof Since the vectors m and m are one-dimensional, we can simply denote by m both m
and its only component mg, and by 71 both nz and 7.

We preliminarily observe that, according to (5.4), (5.7), (4.5), and the definition of non-
diagonal terms given in Sect. 5.3, for any 7 > 0 and any 1 > 0 the function W% - (z) can
be expressed as follows:

ladd .
W—f Srm m(t’ f;, U)

_ _ s(v §-2P (v E-2P\
2m+20 2—-d/2 21‘ d 21 e
=3 i e R (4 E2E) 7 )

2e 2¢e
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v+§/2 v+E/2

U L] L] U U L] L]

v-g/2 e

Fig. 2 An example of Feynman graph associated to a pure recollision term. Here m =7, m = 4

X / doe ™™ R (a, v+ £/2, —in) Y] (o, v + £/2)
R

x/d&ei’&’Rﬁ“(&‘,v—g/z,in)?f(a‘,v—g/z) (7.1)
R

BT O e W 222 2 §-—2P v §-2P

=4 ( 27r> £ f<s+ 2e )f<8 2¢ )

2m m
o (T o= 30 ) ([T
[0, tjz”"H =0 =0

|:1_[<Z /dkL(k 0)6_”2/ |[e(v+§/2+k)+aw(k)]>:|
Jj=1 \oe{x}

2m i
[0, t]2m+l =0 =0

|:1_[<Z /dkL(k (7)6_”2/ 1le(v— §/2+k)+aw(k)]>:| (72)
j=1 \oe{£}

where the functions R and Y, were defined in (5.5). The expression at the r.h.s. of (7.1) is
said the resolvent form, the one in (7.2) is said the propagator form of the ladder Wigner
function. One can easily obtain the first from the second one using the identity

o e’ Ziar iatin) X s
81‘—2 si|l=— | e'Ye i=0% da,
J 2 R
=0

integrating in the variables s, and proceeding analogously for the variables 5.
Moreover, we introduce the following quantity:

L L(k, o)dk
®p = lim Z/ o) e (P b —oa@ rin = TP (13)

The existence of the limit has been proven in Lemma 4.1 of [5].
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Besides, from the definition of the Boltzmann collision kernel (see (1.27) in [5]), the total
cross section op for an electron with momentum P in the phonon field reads

op=21 Y /dUL(P U)s(e(P) — e(U) —ow(P —U)) (7.4)

oe{+}

and identity (4.12) in [5] yields

op
We organize the proof into four steps.
Step 1. Here we prove
C)\.zt m+n
[(Je, WP 5 (0)] < % (7.6)
' m!m!

Let us mention that this estimate is stronger than (10.4) in [5], but applies only to the ladder
terms.

We use the exponential representation of the propagator (7.2). Integrating the delta func-
tion with respect to the variable s,,, one gets

2m 2m m
) _ . —isyje(v+£/2)
[ AT )s(e=22s ) {TTe
0.1 =0 =0 =0

m
|: <Z / kL(k U)e—lszj 1[e(v+k+$/2)+aw(k)]>:|
j=1 \oe{£}
) t 1=50 Z, 0 52j
= e—zte(v+§/2)/. dSO/ dS2 .. / dSZm—Z
0 0 0

’_ZT;()ISZJ
X/ Z /dkL(k o)e sl o0 ®—ewiE/D] |
0

oe{x}

=X 92X 9241
x / dsom—1
0
Now we can use inequality (3.13) and obtain
2m 2m m
o (T (= o0 ) (T
[0, tJZm-H =0 =0

|:l_[(z /dkL(k O,)e—lszj 1[e(v+§/2+k)+ow(k)]):|’

oe{t}

t 1—s0 tfz’;:()z 52 C
<[ ds / ds / " dSom— / dsyj | ———
/0 0 | 2 A 2 2(]_[ 2j— 1 an

Z /dkL(k 0')67”2"’ 1le(v+&/24+k)+ow(k)— L(U+Z;'/2)J>

oe{£}

@ Springer



Rate of Decoherence for an Electron Weakly Coupled to a Phonon Gas 321

Since the space dimension is at least three, the quantity at the r.h.s. can be estimated by

” t t—s0 172’;:02 $2j cmym
C dS() dS2 e dSzm,z = m
0 0 0 .

An analogous estimate holds for the factor in (7.2) involving the variables sy, ..., 55.

i (i) (-5
m:in: &
(v+ (-=E)

CAZ m-m
_L/désupw(é v)|/dv
mim!
where we performed the change of variables v — ev. Estimating the integral in v by
Cauchy-Schwarz inequality and using (1.5) we prove (7.6).
Step 2. Here we prove

[(Je, WP ()]

(C)\.2 )m+m —d

k“)

hII(l) ‘ (J Wladder (S_IT)) < -, Wladder ~(8_1T))’ =0 (7.7)

,0,m,ni ,0,m,m
e—

where
ladder
+ ,0,m,m (t E U)

2P —2P
= (27) 242 —d)\‘2m+2mcbmq>m 2l—f 5 7 v §
8 2¢e £ 2¢e

xezm/dae’i“"R”’H(a,v+$/2, —in)/dae’f&’Rﬁ“(&‘,v—g/z,im (7.8)
R R

and ®p was defined in (7.3). Comparing formula (7.8) with (7.1), one easily notices that
Wladd%‘m & equals W% - apart from the replacement of Y, by ®p. Then, in the case
m = m = 0 there is nothing to prove. We give the proof in detall for the generic case with
both m and m greater than zero, and leave to the reader the case in which either m or m

vanishes. We have

<‘] Wfdd(e)rm m (t)> - ( fdd?)rm m (t)>

= () 242 gy 2420 2”’fd§dvl €, ) f<2 n & —2P> f(g _§ —2P>
£ 2¢e g 2¢e

x / dade™" e R R YT - ol | (7.9)
where for brevity we used the notations

R=R(a,v+&/2,—in), Y, ="y(,v+£§/2)
R=R@ v—£/2,in), Y,=0,@ v—E&/2).

By the first estimate in (5.6) we have
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RERGEE LA

m— ~ m—1 )
(Y, — ®p Z i 4w (1, - @)Y Trien !
j=0 j=0
<C™ (|7, = @p| +|T, — @p)). (7.10)

Now we estimate (7.10). From the third formula in (5.6) one has
Y, — ®p|
<Cn 2 (ja —e(P)| + v +&/2— P| +n)
<Cn P (la—e(+&/D)| +le(v+&/2) —e(P)| + [v+&/2— P|+1) (7.11)
Moreover, the first estimate in (5.6) shows that
|1, —@p| < |1y +|@p|<C (7.12)
From (7.11) and (7.12) we obtain
0y = @p| < Cn P (le(v +£/2) —e(P) + [v+§/2— P
+min (Jo — e(v +£/2)[, 1)) (7.13)

where we used n = ¢ < 1. In order to obtain an analogous estimate for ’Tn — 51:’ we first
observe that, due to the symmetry of the functions e(-), w(-), L(-, ), one has

®p =gy (e(P), P)=Tos(e(P), —P).
Hence, mimicking (7.11), (7.12), (7.13), one obtains

¥y —@p| < O (je(v — §/2) — e(P)| + [v — £/2 + P|
+ min (la —e(v — &/2)|, 1)) (7.14)
From (7.9), (7.10), (7.13), (7.14) we obtain

(e W, (7' D)) = (Lo WL, (7' T)) |

<o 71/2(C)\’2)m+m/d§dv}.] & v)|‘f< 5 2P>Hf<__ —2P>’

2¢
X/ dad@|RI" " |RI™ [le(v +£/2) — e(P)| + le(v — £/2) — e(P)|
R2

+lv+&E/2—-Pl+|v—-§/2—-P|
+ min (jo — e(v + £/2)|, 1) + min (J& — e(v — £/2)|, 1)]
=+UN+UD+ U +UID+ UL (7.15)

where the last decomposition is made according to the terms in square parentheses in the
r.h.s. of (7.15).
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The first term is estimated as follows

() < s~ (€22 / d€ sup |7, (6, v)|

£—2P v E—2P
<[l ()P -0)

X le(u+&£/2) — e(P)| / dadd|R|" | R|" .
]RZ

Recalling that m > 1, we have

/’ do _

. =Cn™"
loo — e(v +&/2) + in|m*!
and analogously for the integral in @.

By Cauchy-Schwarz the integral in v gives

&E-2P v &-2P
/dvf(s 2¢e )‘f<;_ 2¢e )

~ ~ —2pP\ [
11| fao|7(2+5527)

Changing variable to u := ¢ + = — £

le(v+&/2) —e(P)|

1

—e<P>|2]2

/2

one gains a further factor ¢“/=. Besides, using

hypothesis (3.2) one gets
le(v+£/2) — e(P)| = le(eu + P) — e(P)| < Ce(u)*(P)
Then
/dv'f(ngg 2P)‘ ‘f(g—g 2P>’| (+&/2) —e(P)| < Ce N (P)I| f | 2 re)

After getting rid of the integral in the variable & by (1.5) we obtain

(1) < en 27" P Fl o ey < C" e 2P £ g2 ey

where we chose n = ¢ and used A = /.

Term (/1) in (7.15) has the same structure as (), apart from the replacement of e(v +
£/2) —e(P) withv+&/2— P.

For estimating (/11) we proceed as in Lemma 10.3 in [5]. Using the notation 6(s) =
min(|s|, 1), we observe that

O —e(v+£/2)) - C
lo —e(w+&/2) +inl — (@ —e(v+5§/2))
Then, by assumption (1.5), hypothesis m > 1, Cauchy-Schwarz inequality and the fol-

lowing two estimates, easily derived from (3.10),
/ da _
(@ —e(w+&/D)a—e(w+E/2)+inl" —

m_1—m

/ da < m__—m
@ —ew—&/2) tigpt =
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we conclude

(I < g*d(cxz)m“ﬁn*‘“/dgdv [T ] |f

(-5

x/ dada
(@ —e(w+§/2)a—e(w+E£/2) +in"|d —e(v —&/2) 4 in|™+!

1 ~
S 2 Cm+m

For terms (1), (I1), (I1I') in (7.15) we have the same estimates found for the corre-
sponding terms without prime. Then,
[(Je, WESSE (671 T)) — (Je, WEYS (e )| < €™ e (P f 1l 2 e

and (7.7) is proven.
Step 3. Here we prove

(—iT®p)" (iTPp)"

(JS’W-l:idOm m(gilT)) m! m‘

(‘]87 W+afree(871T)> (716)

First, notice that the integrals in do and d@ in the definition (7.8) of W}fdd‘ffm 5 () can be
explicitly computed using residue theorem. One obtains

/ da e — opiememitewen (T
[ —e(v+&/2) +in]mt! m!

and analogously for the integral in da. Therefore, choosing n =¢, t = eI, A= /€, from
(7.8) one obtains

—iT®p)" (TDp)"
(Jo WHEr (=1 )y — = ()42 (—iT®p)" (iTPp)

/ dE dve— Flew+6/D—e0—/2)]

,0,m,m m‘ ﬁ'
= e (v §—2P\ (v §-2P
xJe (§,v)e f(g + 5 )f(e o ) (7.17)

To compute W, _ (67! T) we write

_ily . iLH
ye,s*IT,Jrf,free:e 'e E|W(§,+)<w8,—|el£ ¢

or equivalently, in the Fourier space

= - i -~ P\ ~(u+P
Do 17 tree (P 1) = e F P —e@lgip- & 7 (p )f < )

&

Finally, (7.16) immediately follows from (7.17) by using (4.12).
Step 4. Here we prove (1.6). By formulas (5.2), (5.3), (5.4), (5.7) for non-diagonal terms,
and eliminating terms with n > 0 by Lemma 6.1, one gets
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llII(l) Lhm (Jsa W+ (E_IT» _TUP (Jsa W+—,free(8_lT)>
£—> —00
(554
= lim lim 20<J WS e T)) = €T (e Wa (e T)),

where we used (7.6) to exchange the limits in K and in ¢. Then, from (7.7) and (7.16)

shl;% Lli)m (Jsa W+ (E_IT» _TGP (Js» W+7,free(€_lT)>
ey (—iTDp)" (TDp)"
= Jim lim| 3 e e (e W e T))
m,m=0 ) :

- e_TaP (Jg, W+—,free(5_1 T))

(454 —
—iT®p)" (iTDp)"
<timsuple 77— Y2 TP i up (g, W et )
K—oo m. =0 . e—0

The first factor in the r.h.s. vanishes due to (7.5), while the second factor is bounded since
[Ues W 0] = [TrO7 e ey e e || < 1O

The proof is complete. O

Appendix
Here we prove Lemma 3.1.

Proof Inequality (3.10) corresponds to formula (5.19) in [5], and we refer to that paper for
the proof. We prove (3.11). We treat the case of @, since for ®_ the proof is the same.

Consider a tiling of the k-space in cubes {Q;};cn of size thinner than g defined in (3.6),
(3.7). Fix Iy := [log*(pn~")], and define the sets

Si=lkeR e B <10~ @u(p. b <e'P), 1s<l<lp—1
S =tk e R 110 — D, (p, k)| <e™p)
So:={k e R : 160 — . (p, k)| > p/e}

and analogously the sets §,~, 0 <l <ly, where 2] replaces 6 in the definitions above.
Then,

L(k)dk
;NS NSy 8.1
/Rue @, (p, k) +inl [0 — &, (u, k) —inl(p ‘ZZ wrleinsin| @b

i 17=0
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where by | - | we denoted the Lebesgue measure in RY and introduced the notation

e )
il 7= sup Y :
M reoinsns \ 18 — Do (p k) + il 18— (k) — inl(p)(u)

Since the actual value of p does not play any role, in what follows we will absorb it in the
constant C.
We prove the following estimate:

1+
Upp<C———sup[(R*1£)], 0<1,T<l. 82)
k

()2 ()2

First, we treat the case 1 </ ,75 ly. We have

il 7= sup Y ; sup
keQ;Ns;NS; |0 — D, (p, k) +inl0 — Dy (u, k) —in keQ;NS;NS; (p)(u)

For the factor |0 — . (p, k) + inl_l we proceed as follows

e if 1 <l <y then we apply |0 — &, (p, k) +in|~' <Cé;
e if [ =/ then we use

6 — @ (p, k) +inl~" < Inl™" < Ceb.

Analogously,
17—, k) —in " <cd, 1<T<, (83)
We finally obtain
! I+T 7
sup —— - <Ce™, 1=<lI<l. (8.4)
keginsinsy \ N0 — @i (p. k) +inl|0 — oy (u, k) —in|

Now we estimate Supc g, ns; 5 ({73 2y)- Using inequalities (3.1), (3.2) we have

P (k)? (k) (6 — @ (p. b))
P = e —araly - @

Notice that in S;, 1 <! <, one has (¢ — &, (p,k)) <1+ e~!p, therefore such a quantity
can be estimated by a constant and we end up with

. (k)
(P =C e keSplsish. (8.6)
Analogously,
-1 <k>2 o 7
(wy- <C s ke Sy 1<l<l. (8.7)

Therefore, from (8.4), (8.6), (8.7) one obtains (8.2) for 1,775 0.
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To estimate U; oo we observe that, proceeding like in (8.5) and using

60—, (p,k
( +(p )). <C. keS,
|6 — @, (p, k) +in|
one gets
1 (k)?
- < , keSp. (8.8)
6 — @4 (p.k)+inl(p) ~ ()2 0
Analogously,

! o s (8.9)
07— @ (k) —in )~ @ " '

Then, from (8.8) and (8.9) one obtains (8.2) for 1,7: 0. Finally, to obtain (8.2) for [ =0,
T;ﬁ 0 it is sufficient to use inequalities (8.7), (8.8) and (8.3), and analogously for the case
14£0,7=0.

The volume factor |Q; N S; N §l~| in (8.1) is estimated as follows:

e if both / and I are greater than zero, then we use inequality (3.7) and estimate the volume
of integration by

—1-T

loinsin|<cs
|p—ul

e if/ =0and l~7é 0, then we use inequality (3.6) and obtain
’Qi N SO N §T| < CE_T;

vice versa, ifi > O,T: 0,then |Q; NS N gol is estimatNed by Ce™
e If both / and / equal zero, then the volume |Q; N Sy N Sy| is estimated by C.

Then,

Z / L(k)dk
5 oo 10 — @4 (p. k) + il 16 — .4 (u, k) — inl(p) (u)

142l +13/1p — ul
<c—= Zn ‘Ll

1~l

{0)2(

(log" n)?
=¢ YL Lo,
T (0)(9) min(l, |p_u|)Z” llzee (o)

The decay property (3.8) of £ guarantees that the sum in i is finite. Then,

> <C
a0 — @ (p. k) +inl |0 — Dy, k) —inl(p)(u) ~  (0)2(F)2 min(1, |p — ul)

* 2
/ L(k)dk (log™n) (8.10)
R

Inequality (8.10) can l~)e improved in the case |p — u| < n. Indeed, in this case, we can
estimate terms with /, / > 0 by means of inequality (3.6) in spite of (3.7). We obtain
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/ Lk)dk
i 10 — D (p, k) +inl 10 — Dy (u, k) — inl(p)u)

1 421y + [yl log*
< N L gy = C— (8.11)
0)200)2 5 (0)2(0)2n
Combining (8.10) and (8.11) we arrive at (3.11).
Estimate (3.12) is trivial. O
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